

A Multiple Comparison Procedure for Hypotheses with Gatekeeping Structures

Xiaolong Luo, Ph.D., MBA, Gary Chen, Ph.D., S. Peter Ouyang, Ph.D. Celgene Corporation

> Bruce W. Turnbull, Ph.D. Cornell University

BASS XIXSavannah, Georgia, November 6, 2012

1

Outline

- A clinical trial example
- Problem Set-up

- •Proposed procedure
- Comparison with alternative procedures
- Application to the clinical trial
- Conclusions

A Clinical Trial*

- **Population: Patients with psoriasis**
- **Treatments: 1:1:1:1 randomization**
	- **Placebo (P)**
	- **Low dose regimen (L)**
	- **Medium dose regimen (M)**
	- **High dose regimen (H)**
- •**Endpoints**

•

Celgene

•

- **1. PASI change from baseline at week 24**
- **2.sPGA change from baseline at week 24**
- \bullet **Objectives with strong control of FWER**
	- **1. Claim significant improvement in PASI change for one or more dose groups**
	- **2. Claim significant improvement in sPGA change for significant dose group(s)**
- •**Sample size: 280 = 4 x 70**

* Some design features and data are modified for illustrative purpose.

Statistical Problem

•**Data**

Celgene

- **H ^γl: ^π ^γ^l = 0 l**the contract of the contract of
- **Individual Z-scores**

$$
Y_{\nu}^{l} = \sum_{j=1}^{n_{l}} Y_{\nu,j}^{l}, l = 0,1,..., K; \nu = 1,2,..., p
$$

$$
Z_{\nu}^{l} = \sqrt{\frac{K+1}{N_{\nu}}} (Y_{\nu}^{l} - Y_{\nu}^{0}), l = 1,..., K; \nu = 1,2,..., p
$$

 $=$ U I A V $=$

ˆ

- **Which of {H ^γl: γ=1,2; l=1,2,3} can be rejected with a strong** $\left(\sqrt{\frac{1}{\sigma^2} + \pi} \pi_{\nu l}, \hat{\sigma} \right)$ $Z_v^l \prec n(\sqrt{\frac{N}{\sigma^2 - 1}} \pi_{vl}, \hat{\sigma}_{vl}^2 + \hat{\sigma}_{vol}^2)$ *N* \quad control at one-sided 2.5% $\qquad \qquad ^\sim \qquad \qquad ^\sim \qquad \qquad ^\sim \qquad \qquad ^\sim \qquad V$ **significant level?** $K + 1$ ^l $\frac{1}{\nu l}$, $\frac{1}{\nu l}$ i $\frac{1}{\nu l}$ \bigvee $K+1$ \bigvee \bigvee
- • **No normality assumption for PASI and sPGA changes** $\frac{1}{\sqrt{2}}Z_{V}^{i} > Z_{vl}$ ˆ $(\sqrt{\frac{1}{\hat{\sigma}^2_{vl}+\hat{\sigma}^2_{v0}}})$ 2 Δ 2 \rightarrow \sim \sqrt{l} *l l* $p_{\nu l} = P(\sqrt{\frac{2}{\hat{\sigma}_{\nu l}^2 + \hat{\sigma}_{\nu 0}^2}} Z_{\nu}^l > z_{\nu l})$ $+\hat{\sigma}_{\nu 0}^2$ $Z_{\nu}^2 >$ = $\mathbf{v} = \mathbf{v}$ **of the set of** $\mathbf{v} = \mathbf{v}$

Some Available MCPs

- For the combined family of F_1 and F_2 , use weighted **bonferroni procedures (or graphical representation)**
	- **Bretz, Maurer, and Hommel 2011 SIM**

- Use Bonferroni for F_1 and F_2 individually, and then **mix them for the combined family with a bonferroni mixing function**
	- **Dmitrienko and Tamhane (2011) SIM**
- Use truncated Hommel test for F_1 and F_2 individually, **and then mix them for the combined family with ^a bonferroni mixing function**
	- **Brechenmacher, Xu, Dmitrienko, Tamhane, A.C. (2011) JPS**

Points for Consideration

- • **Many MCPs are implemented based on marginal p-values {p ^γl :γ=1,2,l=1,2,3}**
	- **Can they be improved by considering the correlation among individual test statistics?**
- **Some assume individual test statistics are positively correlated**
	- **May not be easily verified in some cases**
- How do we choose initial local alpha?
- **Power assessment of a MCP**

Joint asymptotic distribution

$$
Z_{\nu}^{l} \prec n \left(\sqrt{\frac{N}{K+1}} \pi_{\nu l}, \hat{\sigma}_{\nu l}^{2} + \hat{\sigma}_{\nu 0}^{2} \right)
$$

$$
(Z_{1}, ..., Z_{pK}) \prec n \left(\sqrt{\frac{N}{K+1}} (\pi_{1}, ..., \pi_{pK})', \hat{V} \right)
$$

$$
\hat{V} = \begin{pmatrix} C^{0} + C^{1} & C^{0} & C^{0} \\ C^{0} & C^{0} + C^{2} & C^{0} \\ C^{0} & C^{0} & C^{0} + C^{3} \end{pmatrix}
$$

Celgene

 C^{-1} = sample covariance matrix of random vector (Y_1^0)

$$
\cdot \qquad (Y_1^l, ..., Y_p^l) \underset{7}{\longrightarrow}
$$

Proposed Procedure: Overview

- • \bullet For any intersection of $\mathsf{H}_1, \dots, \mathsf{H}_6$, $\mathsf{H}(\mathsf{e})$ with **e=(e 1,…,^e 6), define an α level test**
	- **Truncated Dunnett type for F 1 family**

- **Union test to maintain gatekeeping structure**
- **Joint distribution to compute local type I error**
- **Use Maucus' closed test principle to derive a strongly controlled MCP**

Celgene

\n**Some Notations**

\n
$$
(Z_1, \ldots, Z_{pK}) \prec n \left(\sqrt{\frac{N}{K+1}} (\pi_1, \ldots, \pi_{pK}) \right), \hat{V}
$$

\n
$$
(W_1, \ldots, W_{pK}) \prec n \left((0, \ldots, 0) \right), \hat{V}
$$

\n
$$
U_{e, \hat{V}(e)} (u) = P \left(\max \{ W_j : e_j = 1 \} \le u \right)
$$

\n
$$
p(e) = 1 - U_{e, \hat{V}(e)} \left(\max \{ Z_j : e_j = 1 \} \right)
$$

$$
\alpha \text{ level test} \text{ for } H(e) :
$$

$$
\max\{ Z_j : e_j = 1 \} \ge U_{e, \hat{V}(e)} (1 - \alpha)
$$

$$
c(1, \alpha) = U_{e^M, \hat{V}(e^M)}(1 - \alpha), e^M = (1, 0, 1, 0, 1, 0)
$$

$$
f(v_1, e, \alpha) = v_1 U_{e, \hat{V}(e)} (1 - \alpha) + (1 - v_1) c (1, \alpha)
$$

\n
$$
\ge U_{e, \hat{V}(e)} (1 - \alpha)
$$

)

Dunnett-type test for F1 and for F 2

For anye within $F_{\rm l}$, construct a truncated α level test for H(e): $\max\{Z_j : e_j = 1\} \ge f(\nu_1, e, \alpha)$ *e j* $=$ 1} $\geq f(V_1, e, \alpha)$

Celgene

For anye within F_2 , construct an un-truncated $\max\{Z_i : e_i = 1\} \ge U_{\hat{U}(c)}(1-\alpha)$ α level test for H(e): ˆ Z_i : $e_i = 1$ $\ge U_{i,j}$ $(1-\alpha)^{i-j}$ $j \cdot c_j$ **i** $j = c_{e, \hat{V}(e)}$

Union Test for Mixed Intersections

$$
e = e^{1} + e^{2}, e^{1} \in F_{1}, e^{2} \in F_{2}
$$

\n
$$
H(e) = H(e^{1}) \cap H(e^{2})
$$

\n
$$
C(e) = \{ \max\{Z_{j} : e_{j}^{1} = 1\} \ge f(v_{1}, e^{1}, \alpha)\} \cup \{ \max\{Z_{j} : e_{j}^{2} = 1\} \ge g(v_{1}, e, \alpha)\}
$$

\n
$$
P(C(e) | H(e)) = \alpha \text{ for finding } g(v_{1}, e, \alpha)
$$

 $(e) = \{ \max\{Z_i : e_i^1 = 1\} \ge f(v_i, e^1, \alpha) \}$ Special case for $e^1 = e^M$: $C(e) = \{ \max\{Z_j : e_j^1 = 1\} \ge f(v_1, e^1, \alpha)$ $= e^M$

Modification with Logical Constraint

 $e = (0,1,1,0,1,1)$ with common treatment $H(3)$

Celgene

 $(0,0,1,0,1,0)$ for endpoint 1 and treatment M and H e^1 = (0,0,1,0,1,0) for endpoint 1 and treatment M an $H(e) = H(e^{1}) \cap H(e^{2})$ $(0,\!1,\!0,\!0,\!0,\!1)_2$ for endpoint 2 and treatment L and H $e^2 =$

 $(e) = \{ \max\{Z_i : e^1_i = 1\} \ge f(v_i, e^1, \alpha) \}$ $C(e) = \{ \max\{Z_j : e_j^1 = 1\} \ge f(v_1, e^1, \alpha)$

 $(0,0,1,0,1,0)$ for endpoint 1 and treatment M and H $e = (0,1,1,0,1,0)$ without common treatment $e^1 =$ $H(e) = H(e^{1}) \cap H(e^{2})$ $(0,1,0,0,0,0)$, for endpoint 2 and treatment L $0,\!0,\!1,\!0,\!1,\!0\!,\!0,\!0,\!0$ 2 $e^2 =$ 12 $(e) = \{ \max\{Z_i : e_i^1 = 1\} \ge f(v_1, e^1, \alpha)\} \cup \{ \max\{Z_i : e_i^2 = 1\} \ge g(v_1, e, \alpha)\}$ $1 \in \mathbb{R}$ 1 | $1 \in \mathbb{R}$ | $7 \in \mathbb{Z}$ 1 $C(e) = \{ \max\{Z_j : e_j^1 = 1\} \ge f(v_1, e^1, \alpha) \} \cup \{ \max\{Z_j : e_j^2 = 1\} \ge g(v_1, e, \alpha) \}$

Random sample from $(Y_1^l, Y_2^l) \prec n((m_1^l, m_2^l)^r, \Sigma^l), l = 0,1,2$

$$
V = \begin{pmatrix} 2.0 & -0.7 & 1.0 & 0 \\ -0.7 & 2.0 & 0 & 1.0 \\ 1.0 & 0 & 2.0 & -0.8 \\ 0 & 1.0 & -0.8 & 2.0 \end{pmatrix}
$$

\n
$$
Y_v^l = \sum_{j=1}^{n_l} Y_{v,j}^l, l = 0,1,2; v = 1,2, p_v = P(\sqrt{\frac{1}{\hat{\sigma}_v^2 + \hat{\sigma}_v^2}} Z_v^l > Z_v)
$$

\n
$$
H_i : \pi_i = 0, i = 1,2,3; F_1 = \{H_1, H_3\}, F_2 = \{H_2\}
$$

\nsimulation runs :10,000

Bonferroni Mixing

Celgene

Reject $H(I)$ if $\begin{cases} p_i(I_i) \leq \alpha & \text{if } I = I_i \ (i = 1, 2), \\ \phi_I(p_1(I_1), p_2(I_2)) \leq \alpha & \text{if } I = I_1 \cup I_2, I_1 \text{ and } I_2 \text{ are nonempty.} \end{cases}$

$$
\phi_I(p_1(I_1), p_2(I_2)) = \min\left(p_1(I_1), \frac{p_2(I_2)}{1 - e_1(I_1|\alpha)/\alpha}\right)
$$

- • **Erro u ct o o r f nction for Bo eo nf erroni test**
	- •**Dmitrienko and Tamhane (2011) SIM**
- **Error function for truncated Hommel test**
	- \bullet • Brechenmacher, Xu, Dmitrienko, Tamhane, A.C. (2011) JPS

$$
e_1(I_1|\alpha) = |I_1|\alpha/n_1 \qquad e(I|\alpha,\gamma) = (\gamma + (1-\gamma)|I|/n)\alpha \text{ if } |I| > 0
$$

Application to the Clinical Trial*

•**Population: Patients with psoriasis**

- • **Placebo (P): n=79; Low dose regimen (L): n=66; Medium dose regimen (M): n=70; High dose regimen (H): n=72**
- • **Standardized PASI and sPGA changes adjusted by P group**
	- **Z=(,, , , ,) 24.32 , 2.36, 38.25, 5.67, 52.77, 7.32)**
	- **V=(78.22 7.68 42.91 3.96 42.91 3.96 7.68 1.62 3.96 0.72 3.96 0.7242.91 3.96 92.30 9.28 42.91 3.963.96 0.72 9.28 1.82 3.96 0.7242.91 3.96 42.91 3.96 96.00 7.663.96 0.72 3.96 0.72 7.66 1.64)**
- • **C(1,0.025)=22.43 and compute f(1,0.025,e), all of which are** smaller than 23. Thus, L, M, H are better than P in PASI
- \bullet **Compute g bounds and decision rules**
	- **Gatekeeping: M and H are better than P (L cannot be concluded)**
	- **Gatekeeping with constraint: same result in this case**
- * Some design features and data are modified for illustrative purpose.

Graphical Approach to the trial data

Celgene

updated graph after sequentially rejecting H11, H12, H13, H22 and H23

Conclusions

•

Celgene

Propose a MCP based on jointly asymptotic multi i t ltivariate di t ib ti distribution

- **Utilize internal correlation among marginal tests statistics**
- **Avoid assumption of normal distribution**
- **Avoid assumption of positive correlation among individual test statistics**
- **Show to have improvement over graphical procedure and bonferroni mixing for gatekeeping procedure in numerical examples under study**

•**Apply the procedure to a real clinical trial data**

- – **Easy implementation with computational package of multivariate normal distribution**
- • **Application to group sequential design with multiple endpoints could be extended**